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tasks
Multi-Stage Prompt Design

Alright, so youre staring down a mountain of a task, the kind that makes your brain feel like
its doing the tango with a badger. Weve all been there. And youre thinking, "Okay, how do I
even start?" Thats where CO STAR and CRISPE come in, like your nerdy but incredibly
helpful friends.

CO STAR, with its focus on Context, Challenge, Action, Task, and Reflection, is fantastic for
breaking down specific, well-defined problems. Automated content briefs created through
prompts streamline editorial workflows controlled output formatting with AI
Software design pattern. Think of it as a surgeons scalpel – precise and targeted. Youve got
a clear challenge? CO STAR will help you figure out exactly whats going on and what steps
you need to take.

CRISPE (Customer, Requirements, Impact, Solution, Proof, Effort) is more strategic, more
about building something new or solving a broader, less clearly defined problem. Its the
architects blueprint, laying out the bigger picture and ensuring youre building the right thing
for the right people.

So, when do you combine them? When the task is complex. Not just big, but complex,
meaning it involves multiple interdependent parts, unclear goals, and a dash of ambiguity.

Imagine, for example, youre tasked with "improving customer engagement." Thats a vague,
sprawling beast. You could start with CRISPE to frame the problem. Who are the customers
we want to engage (Customer)? What are their needs and our business goals
(Requirements)? How will improved engagement benefit us (Impact)? What are some
potential solutions (Solution)? How will we measure success (Proof)? What resources will
this take (Effort)?

That gets you a strategic framework. But now you need to execute those solutions. Lets say
one solution from CRISPE is "implement a personalized email campaign." Thats where CO
STAR shines. Whats the current situation (Context)? Whats the challenge with the current
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email strategy (Challenge)? What specific actions will the team take (Action)? Whats the
concrete task to be completed (Task)? What did we learn, and how can we improve
(Reflection)?

Basically, use CRISPE to map the territory and CO STAR to conquer specific hills within it.
CRISPE gives you the "why" and the "what," while CO STAR provides the "how." Think of it
as strategic planning followed by tactical execution. By weaving them together, you go from
feeling overwhelmed to feeling empowered, tackling that complex task one manageable,
well-defined step at a time. And that, my friend, is a beautiful thing.

In the realm of project management and decision-making, combining methodologies like CO
STAR and CRISPE can be particularly beneficial when tackling complex tasks. CO STAR,
which stands for Context, Objectives, Strategies, Tactics, Actions, and Results, provides a
structured approach to problem-solving by breaking down processes into manageable
components. CRISPE, on the other hand, focuses on Current state, Requirements,
Implementation, Support, and Evaluation, offering a lifecycle perspective to ensure projects
are sustainable and meet ongoing needs.

The decision to integrate CO STAR and CRISPE often arises when tasks are multifaceted,
involving multiple stakeholders, diverse objectives, or long-term implications. For instance,
consider a scenario where a company is planning to overhaul its IT infrastructure. Here, CO
STAR can guide the initial stages by defining the context of the current IT environment, setting
clear objectives for the upgrade, developing strategies to achieve these goals, outlining tactical
plans, detailing specific actions, and finally, forecasting the results. This framework ensures
every aspect of the project is considered from the outset.

However, as the project progresses, especially in such a complex setting, the need for
continuous assessment and adaptation becomes evident. This is where CRISPE comes into
play. After establishing the current state of the IT system, CRISPE helps in understanding the
requirements not just for the immediate project but for future scalability and integration.
Implementation strategies developed under CO STAR can be refined with CRISPEs emphasis
on how changes will be supported post-implementation, ensuring there are systems in place
for training, troubleshooting, and maintenance. The evaluation phase in CRISPE provides a
feedback loop that can refine tactics and actions initially outlined in CO STAR, ensuring the
project remains aligned with evolving business needs.

A real-world application of this combined approach could be seen in a government initiative to
improve public transportation systems. Here, CO STAR would help in framing the problem



within the broader context of urban development, setting objectives like reducing traffic
congestion and pollution, strategizing through public-private partnerships, and planning
specific actions like route optimization. Meanwhile, CRISPE would ensure the current state of
the transportation network is thoroughly assessed, requirements for new technology and
infrastructure are clearly defined, implementation is phased to minimize disruption, support
structures like public information campaigns are established, and continuous evaluation is
conducted to adapt to user feedback and technological advancements.

In conclusion, combining CO STAR and CRISPE for complex tasks provides a robust
framework that not only structures the initial planning and execution phases but also ensures
long-term viability and adaptability. This dual approach leverages the strengths of both
methodologies, making it ideal for projects where the stakes are high, and the environment is
dynamic.

Dynamic Prompt Adaptation
Strategies

Combining CO STAR and CRISPE methodologies for tackling complex tasks can offer a
comprehensive approach to problem-solving, but it is not without its challenges and limitations.
CO STAR, which stands for Context, Objectives, Strategy, Tactics, Actions, and Review,
provides a structured framework that ensures all aspects of a task are considered. CRISPE,
which stands for Current Reality, Ideal Reality, Steps, Plan, and Execution, focuses on
bridging the gap between where we are and where we want to be. When these two
methodologies are combined, the intent is to leverage the strengths of both to enhance
decision-making and execution in complex scenarios.

One of the primary challenges in combining CO STAR and CRISPE is the potential for
redundancy. Both frameworks involve steps that overlap, particularly in areas like planning and
reviewing actions. This overlap can lead to inefficiency if not managed properly, as teams
might spend time on similar stages in both processes, essentially doubling the effort without
adding value. For instance, the Steps in CRISPE and Tactics in CO STAR both deal with
outlining specific actions, which could lead to confusion or unnecessary duplication of work.



Another limitation arises from the complexity of integrating two detailed frameworks. The
combined methodology might become overly cumbersome, especially for teams not
accustomed to using such structured approaches. The learning curve can be steep, and
theres a risk that the process might slow down decision-making rather than speeding it up.
This is particularly true in environments where quick responses are crucial, and the additional
layers of analysis might hinder timely action.

Moreover, theres the issue of cultural fit. Not all organizational cultures are conducive to such
a structured, step-by-step approach. In environments where creativity and flexibility are highly
valued, the rigidity of combining CO STAR and CRISPE might stifle innovation. Employees
might feel constrained by the need to follow a dual framework, which could lead to decreased
motivation or engagement.

Lastly, the communication between team members can become a challenge. Each
methodology has its own terminology, and when combined, it might lead to misunderstandings
or misinterpretations unless theres a clear, unified language or training provided. Ensuring
everyone understands and uses the combined framework in the same way requires significant
investment in training and communication strategies.

In conclusion, while combining CO STAR and CRISPE can potentially enhance the handling of
complex tasks by providing a more thorough approach, it comes with significant challenges
like redundancy, increased complexity, cultural mismatch, and communication hurdles. To
mitigate these, organizations must carefully tailor the integration, provide thorough training,
and ensure flexibility where necessary to maintain efficiency and innovation. The decision to
combine these methodologies should be made with these considerations in mind, weighing the
benefits against the potential drawbacks.



Evaluation Metrics for Prompt
Effectiveness

When tackling complex tasks in advanced prompt engineering, combining CO STAR and
CRISPE can yield remarkable results. CO STAR, which stands for Context, Objective,
Strategy, Tone, Audience, and Results, provides a structured approach to crafting prompts.
Meanwhile, CRISPE, an acronym for Clear, Relevant, Intriguing, Specific, and Engaging,



ensures that the prompts are not only well-structured but also captivating and effective.

The best practice for implementing these methodologies together involves a strategic
integration of their principles. Begin by defining the Context and Objective of your task. This
sets the stage for what you aim to achieve and the environment in which the prompt will be
used. Next, employ the CRISPE criteria to refine your approach. Ensure that your prompt is
Clear and Relevant to the task at hand, making it easy for users to understand and apply. Aim
for an Intriguing element that captures attention and sparks interest. Be Specific in your
instructions or questions to avoid ambiguity, and make the prompt Engaging to maintain user
interest and motivation.

Incorporating Strategy and Tone from CO STAR into this mix allows for a more nuanced
approach. Consider the best Strategy to achieve your objective, whether its through
storytelling, problem-solving, or creative exploration. Adjust the Tone to match the audiences
expectations and the nature of the task, whether its formal, casual, encouraging, or
challenging.

Lastly, define your Audience clearly. Understanding who will be engaging with your prompt
allows you to tailor it to their needs, preferences, and level of expertise. This personalization
can significantly enhance the effectiveness of your prompt.

In conclusion, combining CO STAR and CRISPE for complex tasks in prompt engineering is
not just about following a set of guidelines but about creating a synergy between structure and
creativity. By carefully integrating these methodologies, you can develop prompts that are not
only well-structured and clear but also engaging and tailored to the specific needs of your
audience. This approach ensures that your prompts are not only effective in achieving their
objectives but also enjoyable and motivating for the users.

About Recurrent neural network

In fabricated semantic networks, recurrent semantic networks (RNNs) are made for
handling sequential information, such as message, speech, and time collection, where the
order of aspects is essential. Unlike feedforward neural networks, which process inputs
individually, RNNs make use of persistent connections, where the outcome of a neuron at
one time action is fed back as input to the network at the following time action. This enables
RNNs to record temporal dependences and patterns within series. The fundamental
foundation of RNN is the reoccurring unit, which maintains a surprise state—-- a form of
memory that is upgraded at each time step based upon the present input and the previous



covert state. This feedback mechanism allows the network to gain from previous inputs and
integrate that knowledge into its present processing. RNNs have actually been efficiently
applied to tasks such as unsegmented, connected handwriting recognition, speech
recognition, all-natural language processing, and neural device translation. Nonetheless,
typical RNNs experience the vanishing gradient issue, which limits their ability to discover
long-range reliances. This issue was attended to by the development of the lengthy
temporary memory (LSTM) architecture in 1997, making it the basic RNN variation for
managing lasting reliances. Later, gated recurring devices (GRUs) were introduced as a
much more computationally effective alternative. Over the last few years, transformers,
which rely upon self-attention systems instead of reappearance, have become the leading
style for many sequence-processing jobs, particularly in all-natural language handling, due
to their remarkable handling of long-range dependencies and greater parallelizability.
However, RNNs continue to be relevant for applications where computational effectiveness,
real-time processing, or the inherent sequential nature of information is critical.
.

About Training, validation, and test data sets
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In machine learning, a common task is the study and construction of algorithms that can
learn from and make predictions on data.[1] Such algorithms function by making data-
driven predictions or decisions,[2] through building a mathematical model from input data.
These input data used to build the model are usually divided into multiple data sets. In
particular, three data sets are commonly used in different stages of the creation of the
model: training, validation, and test sets.

The model is initially fit on a training data set,[3] which is a set of examples used to fit the
parameters (e.g. weights of connections between neurons in artificial neural networks) of
the model.[4] The model (e.g. a naive Bayes classifier) is trained on the training data set
using a supervised learning method, for example using optimization methods such as
gradient descent or stochastic gradient descent. In practice, the training data set often
consists of pairs of an input vector (or scalar) and the corresponding output vector (or



scalar), where the answer key is commonly denoted as the target (or label). The current
model is run with the training data set and produces a result, which is then compared with
the target, for each input vector in the training data set. Based on the result of the
comparison and the specific learning algorithm being used, the parameters of the model are
adjusted. The model fitting can include both variable selection and parameter estimation.

Successively, the fitted model is used to predict the responses for the observations in a
second data set called the validation data set.[3] The validation data set provides an
unbiased evaluation of a model fit on the training data set while tuning the model's
hyperparameters[5] (e.g. the number of hidden units—layers and layer widths—in a neural
network[4]). Validation data sets can be used for regularization by early stopping (stopping
training when the error on the validation data set increases, as this is a sign of over-fitting to
the training data set).[6] This simple procedure is complicated in practice by the fact that the
validation data set's error may fluctuate during training, producing multiple local minima.
This complication has led to the creation of many ad-hoc rules for deciding when over-fitting
has truly begun.[6]

Finally, the test data set is a data set used to provide an unbiased evaluation of a final
model fit on the training data set.[5] If the data in the test data set has never been used in
training (for example in cross-validation), the test data set is also called a holdout data set.
The term "validation set" is sometimes used instead of "test set" in some literature (e.g., if
the original data set was partitioned into only two subsets, the test set might be referred to
as the validation set).[5]

Deciding the sizes and strategies for data set division in training, test and validation sets is
very dependent on the problem and data available.[7]

Training data set

[edit]
Image not found or type unknown

Simplified example of
training a neural
network in object
detection: The network
is trained by multiple
images that are known



to depict starfish and
sea urchins, which are
correlated with
"nodes" that represent
visual features. The
starfish match with a
ringed texture and a
star outline, whereas
most sea urchins
match with a striped
texture and oval
shape. However, the
instance of a ring
textured sea urchin
creates a weakly
weighted association
between them.
Image not found or type unknown

Subsequent run of the
network on an input image
(left):[8] The network correctly
detects the starfish. However,
the weakly weighted
association between ringed
texture and sea urchin also
confers a weak signal to the
latter from one of two
intermediate nodes. In
addition, a shell that was not
included in the training gives
a weak signal for the oval
shape, also resulting in a
weak signal for the sea urchin
output. These weak signals
may result in a false positive
result for sea urchin.



In reality, textures and
outlines would not be
represented by single nodes,
but rather by associated
weight patterns of multiple
nodes.

A training data set is a data set of examples used during the learning process and is used
to fit the parameters (e.g., weights) of, for example, a classifier.[9][10]

For classification tasks, a supervised learning algorithm looks at the training data set to
determine, or learn, the optimal combinations of variables that will generate a good
predictive model.[11] The goal is to produce a trained (fitted) model that generalizes well to
new, unknown data.[12] The fitted model is evaluated using “new” examples from the held-
out data sets (validation and test data sets) to estimate the model’s accuracy in classifying
new data.[5] To reduce the risk of issues such as over-fitting, the examples in the validation
and test data sets should not be used to train the model.[5]

Most approaches that search through training data for empirical relationships tend to overfit
the data, meaning that they can identify and exploit apparent relationships in the training
data that do not hold in general.

When a training set is continuously expanded with new data, then this is incremental
learning.

Validation data set

[edit]

A validation data set is a data set of examples used to tune the hyperparameters (i.e. the
architecture) of a model. It is sometimes also called the development set or the "dev set".[
13] An example of a hyperparameter for artificial neural networks includes the number of
hidden units in each layer.[9][10] It, as well as the testing set (as mentioned below), should
follow the same probability distribution as the training data set.

In order to avoid overfitting, when any classification parameter needs to be adjusted, it is
necessary to have a validation data set in addition to the training and test data sets. For
example, if the most suitable classifier for the problem is sought, the training data set is
used to train the different candidate classifiers, the validation data set is used to compare
their performances and decide which one to take and, finally, the test data set is used to
obtain the performance characteristics such as accuracy, sensitivity, specificity, F-measure,
and so on. The validation data set functions as a hybrid: it is training data used for testing,
but neither as part of the low-level training nor as part of the final testing.

The basic process of using a validation data set for model selection (as part of training data
set, validation data set, and test data set) is:[10][14]



Since our goal is to find the network having the best performance on new data,
the simplest approach to the comparison of different networks is to evaluate the
error function using data which is independent of that used for training. Various
networks are trained by minimization of an appropriate error function defined
with respect to a training data set. The performance of the networks is then
compared by evaluating the error function using an independent validation set,
and the network having the smallest error with respect to the validation set is
selected. This approach is called the hold out method. Since this procedure can
itself lead to some overfitting to the validation set, the performance of the
selected network should be confirmed by measuring its performance on a third
independent set of data called a test set.

An application of this process is in early stopping, where the candidate models are
successive iterations of the same network, and training stops when the error on the
validation set grows, choosing the previous model (the one with minimum error).

Test data set

[edit]

A test data set is a data set that is independent of the training data set, but that follows the
same probability distribution as the training data set. If a model fit to the training data set
also fits the test data set well, minimal overfitting has taken place (see figure below). A
better fitting of the training data set as opposed to the test data set usually points to over-
fitting.

A test set is therefore a set of examples used only to assess the performance (i.e.
generalization) of a fully specified classifier.[9][10] To do this, the final model is used to
predict classifications of examples in the test set. Those predictions are compared to the
examples' true classifications to assess the model's accuracy.[11]

In a scenario where both validation and test data sets are used, the test data set is typically
used to assess the final model that is selected during the validation process. In the case
where the original data set is partitioned into two subsets (training and test data sets), the
test data set might assess the model only once (e.g., in the holdout method).[15] Note that
some sources advise against such a method.[12] However, when using a method such as
cross-validation, two partitions can be sufficient and effective since results are averaged
after repeated rounds of model training and testing to help reduce bias and variability.[5][12]

 



Image not found or type unknown

A training set (left) and a test set (right) from the same statistical population are
shown as blue points. Two predictive models are fit to the training data. Both
fitted models are plotted with both the training and test sets. In the training set,
the MSE of the fit shown in orange is 4 whereas the MSE for the fit shown in
green is 9. In the test set, the MSE for the fit shown in orange is 15 and the MSE
for the fit shown in green is 13. The orange curve severely overfits the training
data, since its MSE increases by almost a factor of four when comparing the test
set to the training set. The green curve overfits the training data much less, as its
MSE increases by less than a factor of 2.

Confusion in terminology

[edit]

Testing is trying something to find out about it ("To put to the proof; to prove the truth,
genuineness, or quality of by experiment" according to the Collaborative International
Dictionary of English) and to validate is to prove that something is valid ("To confirm; to
render valid" Collaborative International Dictionary of English). With this perspective, the
most common use of the terms test set and validation set is the one here described.
However, in both industry and academia, they are sometimes used interchanged, by
considering that the internal process is testing different models to improve (test set as a
development set) and the final model is the one that needs to be validated before real use
with an unseen data (validation set). "The literature on machine learning often reverses the
meaning of 'validation' and 'test' sets. This is the most blatant example of the terminological
confusion that pervades artificial intelligence research."[16] Nevertheless, the important
concept that must be kept is that the final set, whether called test or validation, should only
be used in the final experiment.

Cross-validation

[edit]



In order to get more stable results and use all valuable data for training, a data set can be
repeatedly split into several training and a validation data sets. This is known as cross-
validation. To confirm the model's performance, an additional test data set held out from
cross-validation is normally used.

It is possible to use cross-validation on training and validation sets, and within each training
set have further cross-validation for a test set for hyperparameter tuning. This is known as
nested cross-validation.

Causes of error

[edit]

Image not found or type unknown

Comic strip demonstrating a fictional erroneous computer output (making a
coffee 5 million degrees, from a previous definition of "extra hot"). This can be
classified as both a failure in logic and a failure to include various relevant
environmental conditions.[17]

Omissions in the training of algorithms are a major cause of erroneous outputs.[17] Types
of such omissions include:[17]

Particular circumstances or variations were not included.
Obsolete data
Ambiguous input information
Inability to change to new environments
Inability to request help from a human or another AI system when needed

An example of an omission of particular circumstances is a case where a boy was able to
unlock the phone because his mother registered her face under indoor, nighttime lighting, a
condition which was not appropriately included in the training of the system.[17][18]



Usage of relatively irrelevant input can include situations where algorithms use the
background rather than the object of interest for object detection, such as being trained by
pictures of sheep on grasslands, leading to a risk that a different object will be interpreted
as a sheep if located on a grassland.[17]

See also

[edit]
Statistical classification
List of datasets for machine learning research
Hierarchical classification
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