
Prompt Structuring Frameworks
Prompt Structuring Frameworks Understanding the role of CO STAR in
structured prompting How CRISPE enhances clarity in AI generated outputs
SPEC as a guiding model for consistent prompts Using SCQA framing to align
prompts with user intent Adapting BRIEF for instructional content design
When to combine CO STAR and CRISPE for complex tasks Framework
selection for multi step reasoning prompts Practical uses of SPEC in technical
documentation How SCQA improves logical flow in AI conversations
Evaluating framework fit for different content goals Framework based
prompting for collaborative writing Mapping prompt frameworks to industry
applications

Reasoning and Problem-Solving Techniques
Reasoning and Problem-Solving Techniques Exploring chain of thought for
stepwise reasoning Tree of thought as a method for decision exploration
Applying ReAct to combine reasoning with actions How self ask prompts
support Socratic style inquiry Critic and editor prompting for iterative
refinement Plan and solve prompting for structured solutions Self
consistency sampling to stabilize reasoning outputs Using scratchpad
memory to extend logical processes Multi pass reasoning for deeper
content generation Combining few shot examples with reasoning prompts
Exploring debate style multi agent reasoning Adaptive reasoning strategies
for complex AI tasks

About Us

Practical uses of SPEC in
technical documentation
Multi-Stage Prompt Design

https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/index.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/index.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/index.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/understanding-the-role-of-co-star-in-structured-prompting.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/understanding-the-role-of-co-star-in-structured-prompting.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-how-crispe-enhances-clarity-in-ai-generated-outputs.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-spec-as-a-guiding-model-for-consistent-prompts.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-spec-as-a-guiding-model-for-consistent-prompts.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-using-scqa-framing-to-align-prompts-with-user-intent.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-using-scqa-framing-to-align-prompts-with-user-intent.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-adapting-brief-for-instructional-content-design.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-when-to-combine-co-star-and-crispe-for-complex-tasks.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-when-to-combine-co-star-and-crispe-for-complex-tasks.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-framework-selection-for-multi-step-reasoning-prompts.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-framework-selection-for-multi-step-reasoning-prompts.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-practical-uses-of-spec-in-technical-documentation.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-practical-uses-of-spec-in-technical-documentation.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-how-scqa-improves-logical-flow-in-ai-conversations.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-evaluating-framework-fit-for-different-content-goals.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-evaluating-framework-fit-for-different-content-goals.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-framework-based-prompting-for-collaborative-writing.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-framework-based-prompting-for-collaborative-writing.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-mapping-prompt-frameworks-to-industry-applications.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-mapping-prompt-frameworks-to-industry-applications.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/reasoning-and-problem-solving-techniques.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/reasoning-and-problem-solving-techniques.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/exploring-chain-of-thought-for-stepwise-reasoning.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/exploring-chain-of-thought-for-stepwise-reasoning.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-tree-of-thought-as-a-method-for-decision-exploration.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-applying-react-to-combine-reasoning-with-actions.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-applying-react-to-combine-reasoning-with-actions.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-how-self-ask-prompts-support-socratic-style-inquiry.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-how-self-ask-prompts-support-socratic-style-inquiry.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-critic-and-editor-prompting-for-iterative-refinement.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-critic-and-editor-prompting-for-iterative-refinement.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-plan-and-solve-prompting-for-structured-solutions.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-self-consistency-sampling-to-stabilize-reasoning-outputs.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-self-consistency-sampling-to-stabilize-reasoning-outputs.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-using-scratchpad-memory-to-extend-logical-processes.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-using-scratchpad-memory-to-extend-logical-processes.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-multi-pass-reasoning-for-deeper-content-generation.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-multi-pass-reasoning-for-deeper-content-generation.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-combining-few-shot-examples-with-reasoning-prompts.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-exploring-debate-style-multi-agent-reasoning.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-exploring-debate-style-multi-agent-reasoning.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-adaptive-reasoning-strategies-for-complex-ai-tasks.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-adaptive-reasoning-strategies-for-complex-ai-tasks.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/about-us.html

Okay, lets talk about SPEC. Not the CPU benchmark kind, but the SPEC that stands for
Simplified Procedural English. RAG pipelines demonstrate how retrieval can anchor
generative systems in factual data controlled output formatting with AI Website.
Sounds a bit robotic, doesnt it? But trust me, when it comes to making user guides that
actually help people, its a real game-changer.

Think about those times youve wrestled with a manual. You know, the ones filled with
jargon, passive voice, and sentences that go on longer than a Tolkien novel. Frustrating,
right? Thats where SPEC comes in. Its all about clarity and conciseness. Imagine a
technical writer, armed with the SPEC guidelines, ruthlessly cutting out unnecessary words,
using active voice like a ninja, and crafting sentences that are short, sweet, and to the point.

The practical payoff is huge. Suddenly, instructions become easier to follow. Users spend
less time scratching their heads and more time actually using the product. This translates to
fewer support calls, happier customers, and a smoother overall experience.

SPEC also promotes consistency. If everyone on the technical writing team is using the
same guidelines, the documentation will have a unified voice and style. This makes it easier
for users to navigate different sections and find the information they need.

Beyond just clarity, SPEC can also help with translation. Because it relies on simple
language and consistent phrasing, it makes the documentation easier and more cost-
effective to translate into other languages.

So, while the name "Simplified Procedural English" might not sound particularly exciting, the
benefits are undeniable. By leveraging SPEC, we can transform clunky, confusing user
guides into clear, concise, and user-friendly resources that actually empower people to use
the products they buy. And that, my friends, is a win for everyone.

Integrating SPEC in API Documentation

In the realm of technical documentation, particularly for APIs, the practical application of SPEC
(Specifications for Enhanced Clarity) can significantly enhance the utility and user-friendliness

/var/www/vhosts/app.yacss.site/httpdocs/user/-framework-selection-for-multi-step-reasoning-prompts.html

of the documentation. SPEC, a framework designed to standardize and clarify the
presentation of technical specifications, becomes particularly valuable when embedded within
API documentation.

Firstly, consider the primary audience of API documentation: developers and technical teams
who require precise, unambiguous information to integrate and utilize an API effectively. By
incorporating SPEC, documentation can be structured in a way that aligns with the cognitive
processes of these professionals. For instance, SPEC encourages the use of a consistent
schema for describing API endpoints, methods, parameters, and expected responses. This
consistency reduces cognitive load, allowing developers to quickly grasp the necessary details
without sifting through varied formats or styles.

Moreover, SPECs emphasis on clarity plays a crucial role in reducing errors during
implementation. API documentation often includes complex interactions and data structures.
SPEC provides guidelines on how to present this complexity in a digestible manner, using
diagrams, flowcharts, or structured text that visually and textually map out the APIs operations.
This visual aid not only aids in comprehension but also in troubleshooting, as developers can
trace back through the documentation to identify where an integration might have gone awry.

Another practical aspect of integrating SPEC is in the area of versioning and updates. APIs
are dynamic; they evolve with new features, bug fixes, and deprecations. SPEC recommends
a clear versioning strategy within documentation, ensuring that users are always aware of
which version they are working with and what changes have occurred. This practice minimizes
confusion and maintains compatibility, especially in environments where multiple versions of
an API might be in use.

Additionally, SPECs approach to documentation includes considerations for accessibility and
internationalization, which are often overlooked in API documentation. By standardizing how
documentation is presented, SPEC ensures that the information can be easily translated or
adapted for different languages or accessibility needs, broadening the APIs usability across
diverse developer communities.

In conclusion, integrating SPEC into API documentation isnt just about following a set of rules;
its about enhancing the practical utility of the documentation. It ensures that the
documentation serves its purpose efficiently, aiding developers in their work by providing
clear, structured, and accessible information. This approach not only improves the developer
experience but also contributes to the overall success of the API by fostering better
integrations, fewer errors, and a more inclusive user base.

Dynamic Prompt Adaptation
Strategies

Okay, so youre staring at this behemoth of a complex system, right? Think MRI machines,
industrial robots, or even a super intricate software platform. And someones tasked you with
writing the manual. Yikes. Where do you even start? Thats where SPEC comes in, like a
friendly sherpa guiding you up a technical Everest.

SPEC, in this context, isnt about those detailed specifications you see on datasheets (though
those are important too!). Instead, think of it as a structured approach to documentation. Its
about being deliberate and systematic in how you plan, write, and organize your content. Why
is this so practical? Well, imagine trying to explain how a jet engine works if you just started
rambling about random parts. Chaos, right?

SPEC helps you avoid that chaos. It encourages you to define your scope before you start
writing. What exactly are you documenting? Who is your audience? Are they experienced
engineers, or are they new users? Knowing this upfront shapes everything. It stops you from
going down rabbit holes and ensures youre focusing on whats actually important to the people
who will be using your manual.

Then, SPEC pushes you to think about the structure. How will you organize the information?
Will you use a task-based approach ("How to calibrate the sensor") or a component-based
approach ("Understanding the X-Y axis motor")? Having a clear, consistent structure makes
the manual navigable and searchable. Users can quickly find what they need, instead of
wading through pages of irrelevant text.

And finally, SPEC promotes consistency. It encourages you to define terms, use consistent
language, and follow a standardized format for procedures and warnings. This might seem like
a small thing, but it makes a huge difference in readability and comprehension. It prevents
confusion and reduces the risk of users misinterpreting instructions, especially when dealing
with complex or potentially dangerous systems.

So, SPEC isnt some abstract theoretical concept. Its a practical tool that helps you wrangle
the complexity of technical documentation. Its about making your manuals more useful, more
accessible, and ultimately, more effective in helping users understand and operate those
complex systems. Its about turning that daunting mountain of information into a clear, well-
marked trail. And thats a pretty powerful thing.

Evaluation Metrics for Prompt
Effectiveness

Okay, so were talking about SPEC, right? And how it fits into technical training materials,
specifically when were trying to show people the practical side of things. Lets ditch the jargon
for a minute and imagine youre trying to teach someone how to fix a leaky faucet. You wouldnt
just throw a plumbing textbook at them, would you? Youd walk them through it, step-by-step,
showing them exactly what to do. Thats where SPEC comes in.

SPEC, at its heart, is about being specific, precise, and clear. Think of it as the secret sauce
for making technical documentation actually useful. Instead of saying, "Tighten the nut," which
leaves room for interpretation and potential over-tightening, youd say, "Tighten the nut with a
wrench until its snug, but do not overtighten." See the difference? Its about removing
ambiguity.

Now, when youre building training materials, applying SPEC means considering your
audience. What level of knowledge do they already have? Are they complete beginners? Then
you need to break down even the simplest steps into smaller, more manageable chunks. Use
concrete examples, not abstract concepts. Show, dont just tell. Include diagrams, illustrations,
or even short videos that demonstrate the process.

For example, if youre teaching someone how to use a complex software program, dont just list
the functions. Instead, create a realistic scenario – "Imagine you need to generate a report
showing sales figures for the last quarter." Then, walk them through the exact steps, using
SPEC to guide them: "Click the Reports tab. Select Sales Analysis from the dropdown menu.
Enter the date range: October 1st to December 31st. Click Generate Report."

The key is to make it relatable and actionable. Use real-world examples that resonate with
your audience. And always, always, test your materials. Get feedback from people who are
representative of your target audience. Do they understand the instructions? Can they follow
them successfully? If not, revise and refine until you achieve the desired level of clarity and
understanding.

Ultimately, applying SPEC in technical training materials is about empowering people to learn
and do. Its about making complex information accessible and understandable, so they can
confidently apply their new skills in the real world. Its not just about writing instructions; its
about enabling success.

About Natural language processing

All-natural language processing (NLP) is the handling of natural language info by a
computer. The research study of NLP, a subfield of computer science, is typically
connected with artificial intelligence. NLP is associated with information access,
understanding representation, computational linguistics, and much more extensively
with grammars. Major handling jobs in an NLP system consist of: speech
acknowledgment, text category, natural language understanding, and natural language
generation.
.

About Training, validation, and test data sets

v
t
e

Part of a series on

Machine learning
and data mining

Paradigms
Supervised learning
Unsupervised learning
Semi-supervised learning
Self-supervised learning
Reinforcement learning
Meta-learning
Online learning
Batch learning
Curriculum learning
Rule-based learning
Neuro-symbolic AI
Neuromorphic engineering
Quantum machine learning

Problems
Classification
Generative modeling
Regression
Clustering
Dimensionality reduction
Density estimation
Anomaly detection
Data cleaning
AutoML
Association rules
Semantic analysis
Structured prediction
Feature engineering
Feature learning
Learning to rank
Grammar induction
Ontology learning
Multimodal learning

Supervised learning
(classification • regression)

Apprenticeship learning
Decision trees
Ensembles

Bagging
Boosting
Random forest

k-NN
Linear regression
Naive Bayes
Artificial neural networks
Logistic regression
Perceptron
Relevance vector machine (RVM)
Support vector machine (SVM)

Clustering
BIRCH
CURE
Hierarchical
k-means
Fuzzy
Expectation–maximization (EM)

DBSCAN
OPTICS
Mean shift

Dimensionality reduction
Factor analysis
CCA
ICA
LDA
NMF
PCA
PGD
t-SNE
SDL

Structured prediction
Graphical models

Bayes net
Conditional random field
Hidden Markov

Anomaly detection
RANSAC
k-NN
Local outlier factor
Isolation forest

Neural networks
Autoencoder
Deep learning
Feedforward neural network
Recurrent neural network

LSTM
GRU
ESN
reservoir computing

Boltzmann machine
Restricted

GAN
Diffusion model
SOM
Convolutional neural network

U-Net
LeNet
AlexNet
DeepDream

Neural field
Neural radiance field
Physics-informed neural networks

Transformer
Vision

Mamba
Spiking neural network
Memtransistor
Electrochemical RAM (ECRAM)

Reinforcement learning
Q-learning
Policy gradient
SARSA
Temporal difference (TD)
Multi-agent

Self-play

Learning with humans
Active learning
Crowdsourcing
Human-in-the-loop
Mechanistic interpretability
RLHF

Model diagnostics
Coefficient of determination
Confusion matrix
Learning curve
ROC curve

Mathematical foundations
Kernel machines
Bias–variance tradeoff
Computational learning theory
Empirical risk minimization
Occam learning
PAC learning
Statistical learning
VC theory
Topological deep learning

Journals and conferences
AAAI
ECML PKDD
NeurIPS
ICML
ICLR
IJCAI
ML
JMLR

Related articles
Glossary of artificial intelligence
List of datasets for machine-learning research

List of datasets in computer vision and image processing
Outline of machine learning

In machine learning, a common task is the study and construction of algorithms that can
learn from and make predictions on data.[1] Such algorithms function by making data-
driven predictions or decisions,[2] through building a mathematical model from input
data. These input data used to build the model are usually divided into multiple data
sets. In particular, three data sets are commonly used in different stages of the creation
of the model: training, validation, and test sets.

The model is initially fit on a training data set,[3] which is a set of examples used to fit
the parameters (e.g. weights of connections between neurons in artificial neural
networks) of the model.[4] The model (e.g. a naive Bayes classifier) is trained on the
training data set using a supervised learning method, for example using optimization

methods such as gradient descent or stochastic gradient descent. In practice, the
training data set often consists of pairs of an input vector (or scalar) and the
corresponding output vector (or scalar), where the answer key is commonly denoted as
the target (or label). The current model is run with the training data set and produces a
result, which is then compared with the target, for each input vector in the training data
set. Based on the result of the comparison and the specific learning algorithm being
used, the parameters of the model are adjusted. The model fitting can include both
variable selection and parameter estimation.

Successively, the fitted model is used to predict the responses for the observations in a
second data set called the validation data set.[3] The validation data set provides an
unbiased evaluation of a model fit on the training data set while tuning the model's
hyperparameters[5] (e.g. the number of hidden units—layers and layer widths—in a
neural network[4]). Validation data sets can be used for regularization by early stopping
(stopping training when the error on the validation data set increases, as this is a sign of
over-fitting to the training data set).[6] This simple procedure is complicated in practice
by the fact that the validation data set's error may fluctuate during training, producing
multiple local minima. This complication has led to the creation of many ad-hoc rules for
deciding when over-fitting has truly begun.[6]

Finally, the test data set is a data set used to provide an unbiased evaluation of a final
model fit on the training data set.[5] If the data in the test data set has never been used
in training (for example in cross-validation), the test data set is also called a holdout
data set. The term "validation set" is sometimes used instead of "test set" in some
literature (e.g., if the original data set was partitioned into only two subsets, the test set
might be referred to as the validation set).[5]

Deciding the sizes and strategies for data set division in training, test and validation
sets is very dependent on the problem and data available.[7]

Training data set

[edit]
Image not found or type unknown

Simplified example of
training a neural
network in object
detection: The
network is trained by
multiple images that
are known to depict
starfish and sea
urchins, which are
correlated with
"nodes" that
represent visual
features. The starfish
match with a ringed
texture and a star
outline, whereas
most sea urchins
match with a striped
texture and oval
shape. However, the
instance of a ring
textured sea urchin
creates a weakly
weighted association
between them.
Image not found or type unknown

Subsequent run of the
network on an input image
(left):[8] The network
correctly detects the starfish.
However, the weakly
weighted association
between ringed texture and
sea urchin also confers a
weak signal to the latter from

one of two intermediate
nodes. In addition, a shell
that was not included in the
training gives a weak signal
for the oval shape, also
resulting in a weak signal for
the sea urchin output. These
weak signals may result in a
false positive result for sea
urchin.
In reality, textures and
outlines would not be
represented by single nodes,
but rather by associated
weight patterns of multiple
nodes.

A training data set is a data set of examples used during the learning process and is
used to fit the parameters (e.g., weights) of, for example, a classifier.[9][10]

For classification tasks, a supervised learning algorithm looks at the training data set to
determine, or learn, the optimal combinations of variables that will generate a good
predictive model.[11] The goal is to produce a trained (fitted) model that generalizes
well to new, unknown data.[12] The fitted model is evaluated using “new” examples
from the held-out data sets (validation and test data sets) to estimate the model’s
accuracy in classifying new data.[5] To reduce the risk of issues such as over-fitting, the
examples in the validation and test data sets should not be used to train the model.[5]

Most approaches that search through training data for empirical relationships tend to
overfit the data, meaning that they can identify and exploit apparent relationships in the
training data that do not hold in general.

When a training set is continuously expanded with new data, then this is incremental
learning.

Validation data set

[edit]

A validation data set is a data set of examples used to tune the hyperparameters (i.e.
the architecture) of a model. It is sometimes also called the development set or the "dev
set".[13] An example of a hyperparameter for artificial neural networks includes the
number of hidden units in each layer.[9][10] It, as well as the testing set (as mentioned
below), should follow the same probability distribution as the training data set.

In order to avoid overfitting, when any classification parameter needs to be adjusted, it
is necessary to have a validation data set in addition to the training and test data sets.
For example, if the most suitable classifier for the problem is sought, the training data
set is used to train the different candidate classifiers, the validation data set is used to
compare their performances and decide which one to take and, finally, the test data set
is used to obtain the performance characteristics such as accuracy, sensitivity,
specificity, F-measure, and so on. The validation data set functions as a hybrid: it is
training data used for testing, but neither as part of the low-level training nor as part of
the final testing.

The basic process of using a validation data set for model selection (as part of training
data set, validation data set, and test data set) is:[10][14]

Since our goal is to find the network having the best performance on new
data, the simplest approach to the comparison of different networks is to
evaluate the error function using data which is independent of that used for
training. Various networks are trained by minimization of an appropriate error
function defined with respect to a training data set. The performance of the
networks is then compared by evaluating the error function using an
independent validation set, and the network having the smallest error with
respect to the validation set is selected. This approach is called the hold out
method. Since this procedure can itself lead to some overfitting to the
validation set, the performance of the selected network should be confirmed
by measuring its performance on a third independent set of data called a test
set.

An application of this process is in early stopping, where the candidate models are
successive iterations of the same network, and training stops when the error on the
validation set grows, choosing the previous model (the one with minimum error).

Test data set

[edit]

A test data set is a data set that is independent of the training data set, but that follows
the same probability distribution as the training data set. If a model fit to the training
data set also fits the test data set well, minimal overfitting has taken place (see figure
below). A better fitting of the training data set as opposed to the test data set usually
points to over-fitting.

A test set is therefore a set of examples used only to assess the performance (i.e.
generalization) of a fully specified classifier.[9][10] To do this, the final model is used to
predict classifications of examples in the test set. Those predictions are compared to

the examples' true classifications to assess the model's accuracy.[11]

In a scenario where both validation and test data sets are used, the test data set is
typically used to assess the final model that is selected during the validation process. In
the case where the original data set is partitioned into two subsets (training and test
data sets), the test data set might assess the model only once (e.g., in the holdout
method).[15] Note that some sources advise against such a method.[12] However,
when using a method such as cross-validation, two partitions can be sufficient and
effective since results are averaged after repeated rounds of model training and testing
to help reduce bias and variability.[5][12]

Image not found or type unknown

A training set (left) and a test set (right) from the same statistical population
are shown as blue points. Two predictive models are fit to the training data.
Both fitted models are plotted with both the training and test sets. In the
training set, the MSE of the fit shown in orange is 4 whereas the MSE for the
fit shown in green is 9. In the test set, the MSE for the fit shown in orange is
15 and the MSE for the fit shown in green is 13. The orange curve severely
overfits the training data, since its MSE increases by almost a factor of four
when comparing the test set to the training set. The green curve overfits the
training data much less, as its MSE increases by less than a factor of 2.

Confusion in terminology

[edit]

Testing is trying something to find out about it ("To put to the proof; to prove the truth,
genuineness, or quality of by experiment" according to the Collaborative International
Dictionary of English) and to validate is to prove that something is valid ("To confirm; to
render valid" Collaborative International Dictionary of English). With this perspective,

the most common use of the terms test set and validation set is the one here
described. However, in both industry and academia, they are sometimes used
interchanged, by considering that the internal process is testing different models to
improve (test set as a development set) and the final model is the one that needs to be
validated before real use with an unseen data (validation set). "The literature on
machine learning often reverses the meaning of 'validation' and 'test' sets. This is the
most blatant example of the terminological confusion that pervades artificial intelligence
research."[16] Nevertheless, the important concept that must be kept is that the final
set, whether called test or validation, should only be used in the final experiment.

Cross-validation

[edit]

In order to get more stable results and use all valuable data for training, a data set can
be repeatedly split into several training and a validation data sets. This is known as
cross-validation. To confirm the model's performance, an additional test data set held
out from cross-validation is normally used.

It is possible to use cross-validation on training and validation sets, and within each
training set have further cross-validation for a test set for hyperparameter tuning. This is
known as nested cross-validation.

Causes of error

[edit]

Image not found or type unknown

Comic strip demonstrating a fictional erroneous computer output (making a
coffee 5 million degrees, from a previous definition of "extra hot"). This can

be classified as both a failure in logic and a failure to include various relevant
environmental conditions.[17]

Omissions in the training of algorithms are a major cause of erroneous outputs.[17]
Types of such omissions include:[17]

Particular circumstances or variations were not included.
Obsolete data
Ambiguous input information
Inability to change to new environments
Inability to request help from a human or another AI system when needed

An example of an omission of particular circumstances is a case where a boy was able
to unlock the phone because his mother registered her face under indoor, nighttime
lighting, a condition which was not appropriately included in the training of the system.[
17][18]

Usage of relatively irrelevant input can include situations where algorithms use the
background rather than the object of interest for object detection, such as being trained
by pictures of sheep on grasslands, leading to a risk that a different object will be
interpreted as a sheep if located on a grassland.[17]

See also

[edit]
Statistical classification
List of datasets for machine learning research
Hierarchical classification

References

[edit]
1. ^ Ron Kohavi; Foster Provost (1998). "Glossary of terms". Machine Learning. 30:

271–274. doi:10.1023/A:1007411609915.
2. ^ Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. New

York: Springer. p. vii. ISBN 0-387-31073-8. "Pattern recognition has its origins in
engineering, whereas machine learning grew out of computer science. However,
these activities can be viewed as two facets of the same field, and together they
have undergone substantial development over the past ten years."

3. ^ a b James, Gareth (2013). An Introduction to Statistical Learning: with
Applications in R. Springer. p. 176. ISBN 978-1461471370.

4. ^ a b Ripley, Brian (1996). Pattern Recognition and Neural Networks. Cambridge
University Press. p. 354. ISBN 978-0521717700.

5. ^ a b c d e f Brownlee, Jason (2017-07-13). "What is the Difference Between Test
and Validation Datasets?". Retrieved 2017-10-12.

6. ^ a b Prechelt, Lutz; Geneviève B. Orr (2012-01-01). "Early Stopping — But
When?". In Grégoire Montavon; Klaus-Robert Müller (eds.). Neural Networks:
Tricks of the Trade. Lecture Notes in Computer Science. Springer Berlin
Heidelberg. pp. 53–67. doi:10.1007/978-3-642-35289-8_5. ISBN 978-3-642-
35289-8.

7. ^ "Machine learning - Is there a rule-of-thumb for how to divide a dataset into
training and validation sets?". Stack Overflow. Retrieved 2021-08-12.

8. ^ Ferrie, C., & Kaiser, S. (2019). Neural Networks for Babies. Sourcebooks. ISBN
978-1492671206.cite book: CS1 maint: multiple names: authors list (link)

9. ^ a b c Ripley, B.D. (1996) Pattern Recognition and Neural Networks, Cambridge:
Cambridge University Press, p. 354

10. ^ a b c d "Subject: What are the population, sample, training set, design set,
validation set, and test set?", Neural Network FAQ, part 1 of 7: Introduction (txt),
comp.ai.neural-nets, Sarle, W.S., ed. (1997, last modified 2002-05-17)

11. ^ a b Larose, D. T.; Larose, C. D. (2014). Discovering knowledge in data : an
introduction to data mining. Hoboken: Wiley. doi:10.1002/9781118874059. ISBN
978-0-470-90874-7. OCLC 869460667.

12. ^ a b c Xu, Yun; Goodacre, Royston (2018). "On Splitting Training and Validation
Set: A Comparative Study of Cross-Validation, Bootstrap and Systematic
Sampling for Estimating the Generalization Performance of Supervised Learning".
Journal of Analysis and Testing. 2 (3). Springer Science and Business Media LLC:
249–262. doi:10.1007/s41664-018-0068-2. ISSN 2096-241X. PMC 6373628.
PMID 30842888.

13. ^ "Deep Learning". Coursera. Retrieved 2021-05-18.
14. ^ Bishop, C.M. (1995), Neural Networks for Pattern Recognition, Oxford: Oxford

University Press, p. 372
15. ^ Kohavi, Ron (2001-03-03). "A Study of Cross-Validation and Bootstrap for

Accuracy Estimation and Model Selection". 14. cite journal: Cite journal requires
|journal= (help)

16. ^ Ripley, Brian D. (2008-01-10). "Glossary". Pattern recognition and neural
networks. Cambridge University Press. ISBN 9780521717700. OCLC 601063414.

17. ^ a b c d e Chanda SS, Banerjee DN (2022). "Omission and commission errors
underlying AI failures". AI Soc. 39 (3): 1–24. doi:10.1007/s00146-022-01585-x.
PMC 9669536. PMID 36415822.

18. ^ Greenberg A (2017-11-14). "Watch a 10-Year-Old's Face Unlock His Mom's
iPhone X". Wired.

v
t
e

Artificial intelligence (AI)

History
timeline

Companies
Projects

Concepts

Parameter
Hyperparameter

Loss functions
Regression

Bias–variance tradeoff
Double descent
Overfitting

Clustering
Gradient descent

SGD
Quasi-Newton method
Conjugate gradient method

Backpropagation
Attention
Convolution
Normalization

Batchnorm
Activation

Softmax
Sigmoid
Rectifier

Gating
Weight initialization
Regularization
Datasets

Augmentation
Prompt engineering
Reinforcement learning

Q-learning
SARSA
Imitation
Policy gradient

Diffusion
Latent diffusion model
Autoregression
Adversary
RAG
Uncanny valley
RLHF
Self-supervised learning
Reflection
Recursive self-improvement
Hallucination
Word embedding
Vibe coding

Applications

Machine learning
In-context learning

Artificial neural network
Deep learning

Language model
Large language model
NMT

Reasoning language model
Model Context Protocol
Intelligent agent
Artificial human companion
Humanity's Last Exam
Artificial general intelligence (AGI)

Implementations

Audio–visual

AlexNet
WaveNet
Human image synthesis
HWR
OCR
Computer vision
Speech synthesis

15.ai
ElevenLabs

Speech recognition
Whisper

Facial recognition
AlphaFold
Text-to-image models

Aurora
DALL-E
Firefly
Flux
Ideogram
Imagen
Midjourney
Recraft
Stable Diffusion

Text-to-video models
Dream Machine
Runway Gen
Hailuo AI
Kling
Sora
Veo

Music generation
Riffusion
Suno AI
Udio

Text

Word2vec
Seq2seq
GloVe
BERT
T5
Llama
Chinchilla AI
PaLM
GPT

1
2
3
J
ChatGPT
4
4o
o1
o3
4.5
4.1
o4-mini
5

Claude
Gemini

Gemini (language model)
Gemma

Grok
LaMDA
BLOOM
DBRX
Project Debater
IBM Watson
IBM Watsonx
Granite
PanGu-?
DeepSeek
Qwen

Decisional

AlphaGo
AlphaZero
OpenAI Five
Self-driving car
MuZero
Action selection

AutoGPT
Robot control

People

Alan Turing
Warren Sturgis McCulloch
Walter Pitts
John von Neumann
Claude Shannon
Shun'ichi Amari
Kunihiko Fukushima
Takeo Kanade
Marvin Minsky
John McCarthy
Nathaniel Rochester
Allen Newell
Cliff Shaw
Herbert A. Simon
Oliver Selfridge
Frank Rosenblatt
Bernard Widrow
Joseph Weizenbaum
Seymour Papert
Seppo Linnainmaa
Paul Werbos
Geoffrey Hinton
John Hopfield
Jürgen Schmidhuber
Yann LeCun
Yoshua Bengio
Lotfi A. Zadeh
Stephen Grossberg
Alex Graves
James Goodnight
Andrew Ng
Fei-Fei Li
Alex Krizhevsky
Ilya Sutskever
Oriol Vinyals
Quoc V. Le
Ian Goodfellow
Demis Hassabis
David Silver
Andrej Karpathy
Ashish Vaswani
Noam Shazeer
Aidan Gomez
John Schulman
Mustafa Suleyman
Jan Leike
Daniel Kokotajlo
François Chollet

Architectures

Neural Turing machine
Differentiable neural computer
Transformer

Vision transformer (ViT)
Recurrent neural network (RNN)
Long short-term memory (LSTM)
Gated recurrent unit (GRU)
Echo state network
Multilayer perceptron (MLP)
Convolutional neural network (CNN)
Residual neural network (RNN)
Highway network
Mamba
Autoencoder
Variational autoencoder (VAE)
Generative adversarial network (GAN)
Graph neural network (GNN)

Image not found or type unknown Category

Check our other pages :

Critic and editor prompting for iterative refinement
Combining few shot examples with reasoning prompts
Self consistency sampling to stabilize reasoning outputs
Reasoning and Problem-Solving Techniques

Sitemap

Privacy Policy

About Us

https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-exploring-debate-style-multi-agent-reasoning.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-framework-selection-for-multi-step-reasoning-prompts.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-when-to-combine-co-star-and-crispe-for-complex-tasks.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/-using-scqa-framing-to-align-prompts-with-user-intent.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/sitemap.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/privacy-policy.html
https://oceansideweekly.blob.core.windows.net/advancedpromptengineeringtechniques/about-us.html

